为了进行车牌识别,需要以下几个基本的步骤:
1、 牌照定位,定位图片中的牌照位置;
2、牌照字符分割,把牌照中的字符分割出来;
3、牌照字符识别,把分割好的字符进行识别,终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。
自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别号码的处理机(如计算机)等,其软件核心包括定位算法、字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
车牌识别技术要求能够将运动中的汽照从复杂背景中提取并识别出来,通过提取、图像预处理、特征提取、字符识别等技术,识别车辆牌号、颜色等信息,目前新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。
车牌识别系统是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费系统中,也是结合DSRC技术识别车辆身份的主要手段。
车牌识别系统的特点
1、系统配备网络高清智能车牌识别摄像机,平均识别率≥99.8;
2、摄像机支持虚拟触发、地感触发多种触发模式;
3、视频流实时监测、逐帧识别,识别率和识别结果;
4、高度一体化集成(补光,电源,护罩),安装便捷,性能稳定;
5、高用户体验,简单、深受用户信赖和青睐;
6、智能匹配图像分析、模糊查询,系统定位、解决无或者受损车辆进出停车场;
7、大幅提高工作效率,管理收费漏洞;系统可导入、可脱机工作;
8、智能LED语音屏,可自定义语音;
9、机器视觉应用,大气.